快速射电暴搜索与案例分析

射电部午间讨论会

张永坤 ykzhang@nao.cas.cn / 2025.02.26 快速射电暴 Fast Radio Burst

射电波段短时标的超亮爆发

几乎每年都有重要发现产生

~100个定位的FRB,几千个FRB源,几万个爆发

快速射电暴起源未知 Origin (s?)

A. 类脉冲星模型

通过调用致密天体的磁层释放能量产生FRB

B. 类伽马暴模型 利用相对论性激波产生FRB

还没有完整确凿的证据支持某种理论

快速射电暴观测属性

丰富观测属性=>了解极端辐射机制、探索宇宙物质分布

500米口径球面射电望远镜 / 中国天眼 / FAST

Aperture500 m (300 m effective)Frequency Range1 - 1.5 GHz (19 beam L-band receiver)Angular Resolution2.9 arcmin (26 arcmin for 19 beam)Sky CoverageDec -14° to 66° (-1° to 52° with full gain)Sensitivity17 mJy (at time resolution of 49.152 us)

基于FAST的观测,通过开发新的快速射电暴搜索算法,探测更多更丰富的快速射电暴样本,研究其时间、能量、偏振等特性,与爆发源周边环境联系起来,以此进一步了解快速射电暴的起源和演化。

快速射电暴数据展示

搜索快速射电暴=>在**噪声与干扰**中提取微弱信号的到达时间与色散值

常用搜索方法 E.g. Heimdall

不完备、假信号多、运行效率低下

基于深度学习的快速射电暴搜索方法 DRAFTS

数据增强与模型训练 Data Augmentation

使用FAST探测到的真实爆发进行训练=>CenterNet目标检测,ResNet分类模型

4-Combine + r

分类模型数据增强

在真实数据上进行测试 FRB-FREX

目标检测模型可以探测到不同大小的信号

绿色是人工标记,红色是模型预测

Grad-Cam++展示对模型预测权重高的位置

分类模型学到了正确的特征

FRB-FREX 中包含了 600个 FAST 探测到的真实爆发的原始数据片段

与常用方法进行比较 E.g. PRESTO

PRESTO的探测结果

随着信噪比阈值降低, 召回率上升, 准确率快速下降

Method	Threshold	TP	FP	Missed	Duplicates	Precision	Recall	Time (s)
Presto	S/N = 3	520	10663950	80	43044	0.0049%	86.7%	~ 120
Presto	S/N = 5	513	17406	87	40818	2.8%	85.5%	-
Presto	S/N = 7	477	4488	123	25402	9.6%	79.5%	-
CenterNet-18	0.5	580	23	20	-	96.2%	96.7%	4.51
CenterNet-50	0.5	578	20	22	-	96.7%	96.3%	4.67
ResNet-18	0.5	600	1	0	-	99.8%	100%	1.16
$\operatorname{ResNet-50}$	0.5	600	1	0	-	99.8%	100%	1.23

PRESTO 使用 100个 DM 值消色散 CenterNet 使用 1024个 DM 值消色散

目标检测模型和分类模型都能做到极高的召回率同时保持高准确率

与常用方法进行比较 E.g. PRESTO

使用三种工具分别处理同一个6秒的文件,运行用时都包含了IO时间

与常用方法进行比较 E.g. PRESTO

深度学习模型的准确率和召回率都优于PRESTO

使用三种工具分别处理同一个6秒的文件,运行用时都包含了IO时间

重新搜索观测数据 FRB190520

DRAFTS 新探测到的 FRB190520 的爆发

18.3小时的数据,Heimdall探测到75个爆发,DRAFTS探测到这75个+新的183个 Zhang et al. 2025, ApJS

Niu et al. 2022

FRB案例分析 FRB 20201124A

CHIME于20年11月24日首次探测

定位在红移为0.09795的棒旋星系

2021年2至4月第一次活跃,2021年9月第二次活跃

介绍FAST在 2021年9月对 FRB 20201124A的观测

FRB案例分析 FRB 20201124A

系列文章详细研究FRB此次活跃期 => 形态学、能量、偏振、周期

等待时间分布 FRB 20201124A

与其它重复FRB类似,等待时间都表现出双峰分布

能量分布 FRB 20201124A

能量双峰分布

不能用单一幂律函数描述(幂律指数随阈值变化)

Band Function 平滑连接的断幂函数

$$N(>E) = \begin{cases} AE^{\hat{\alpha}} e^{\left(-E/E_{0}\right)} & E \leq (\hat{\alpha} - \hat{\beta})E_{0} \\ \\ AE^{\hat{\beta}} \left[\frac{(\hat{\alpha} - \hat{\beta})E_{0}}{e}\right]^{\hat{\alpha} - \hat{\beta}} & E \geq (\hat{\alpha} - \hat{\beta})E_{0} \end{cases}$$

能量的双峰分布 => 多于一种辐射机制?

能量分布 FRB 20201124A

蓝色 爆发带宽 黑色 设备带宽

蓝色 拆分爆发 黑色 并合爆发

能量分布与爆发定义有关,但不受带宽选择影响

能量分布 FRB 20201124A/20121102A/20190520B

不同FRB的能量分布不同 但大都在1e36-39 erg之间

重复FRB有多样的发射特性

能量预算 Energy Budget

不同FRB能量预算

	Name	ObDays (day)	ObTimes $T_{\rm obs}$ (hour)	Total Observed Energy ¹ $E_{\rm radio}~({\rm erg})$	Averaged Energy ² \bar{L}_{radio} (erg/s)	Total Energy ³ E_{bursts} (erg)		
	FRB 20201124A	4	4	1.60×10^{41}	1.11×10^{37}	3.85×10^{46}	_	
	FRB 20201124A-0928	1	1	1.02×10^{41}	2.84×10^{37}	2.46×10^{46}	14.3%的磁能	(1天)
37.6%的磁能	FRB 20121102A	47	59.5	3.41×10^{41}	1.59×10^{36}	6.47×10^{46}]	
	FRB 20190520B	11	18.5	1.10×10^{40}	1.65×10^{35}	1.56×10^{45}		

1 观测到的所有爆发的各向同性射电能量之和。

 2 E_{radio}/T_{obs}

³ $E_{\text{bursts}} = E_{\text{radio}} \times \left[(\zeta = \text{ObTimes/ObDays})^{-1} \times (\eta = 10^{-5})^{-1} \times (F_b = 0.1) \right]$

爆发总能量×占空比×射电辐射效率×波束因子

调用相对论性激波的Synchrotron Maser模型,产生射电频率的能量效率低

要求更高效的辐射机制

FRB案例分析 FRB 20220912A

CHIME于22年09月12日首次探测

定位在红移为0.0771的星系,且宿主星系DM贡献很小 2022年09月开始活跃,直至2023年10月最后一次探测到爆发

介绍FAST在 2022年10月对 FRB 20220912A的观测

Zhang et al. 2023

合成光谱 Synthetic Spectrum

定标后爆发频谱叠加

合成频谱符合幂律分布,低频辐射更强,且爆发在变亮

类似FRB 20201124A与其他重复暴,等待时间和能量都是双峰分布

爆发带宽 Spectral Width

高斯拟合爆发带宽

重复FRB倾向于窄谱辐射

FRB产生偏振的可能机制

干净的周边环境、高圆偏振度、复杂的圆偏振表现 表明圆偏振更可能是<mark>辐射本征</mark>产生

圆偏振比例与RM Anti-Correlation

表现出圆偏振的爆发占总爆发数量的比例与RM成反相关关系

复杂的环境倾向于"吸收"圆偏振

FRB案例分析 FRB 20190417A

32次观测共计17.3小时 在20次观测中探测到75个爆发 其中12次观测没有探测到爆发

CHIME于19年04月17日首次探测

直到2024年才定位在红移为0.12817的星系,DM很大

一直断断续续有爆发,不是很活跃

介绍FAST在 2021年到2024年对 FRB 20220912A的观测

时间与能量分布 Distributions

与其他重复暴不太相同,等待时间和能量不表现出明显的双峰分布

. 10⁰ Frequency (GHz)

偏振与环境 Polarization

重复FRB似乎处于动态变化的磁环境中

大多重复FRB的RM随时间动态变化

漂移扫描多科学目标同时巡天 CRAFTS

高时频噪声+脉冲星、中性氢、星系和快速射电暴同时巡天

27%的FAST可见天空覆盖 / 6397平方度 谱线数据量1PB, 脉冲星数据量8PB 数据释放 https://fastro.scidb.cn/en

验证222颗脉冲星发现

61毫秒脉冲星
21双星系统(包含3个脉冲星双星系统)
35个旋转射电暂现源
90个脉冲星已发表
80个脉冲星获得计时解

探测到9个快速射电暴

5个已发表 1个持续活跃重复暴 >12万次/天的全天事件率

探测率 Detection Rate

1平米的宇宙触角可 以做到接近CHIME 的探测率

 DRAFTS在搜索效率、准确率和完备性等方面,表现出 优于传统暂现源搜索方法的性能,以应对未来的大数据挑战
 FRB的超高事件率,限制了其辐射机制,要求高的辐射 效率,因此倾向于磁星磁层起源

3. FRB的圆偏振来自辐射本征,复杂的环境会吸收圆偏振

4. 重复FRB倾向于在复杂的、动态演化的磁化等离子体环 境中产生,其发射也不是在简单的偶极场中产生

5. FRB的长周期可能是观测时长不足的偏差(选择效应)

暂现源 Transient

在极短时标和中等时标处还有大量的空白有待填补

