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Fast radio bursts (FRBs) are bright millisecond-duration radio
transients first discovered by Lorimer et al. [1]. While their cosmo-
logical origin and energetic nature make them ideal tools for prob-
ing a range of astrophysics [2], their progenitors and radiation
mechanisms are still unknown. A particularly interesting subset
of FRBs is the so-called repeating FRBs, which recurrently emit
millisecond-duration radio bursts.

Polarization is a fundamental property of FRBs. Faraday rotation
measure (RM) carries critical information about the intervening
and circumburst environments. The polarization angle and degree
of linear and circular polarization can be used to trace the radiation
mechanisms and propagation processes [3]. For example, the
polarization angle of FRB 20180301A showed various short-time-
scale swings, which is hypothesized to originate within the magne-
tosphere of a magnetar [4]. Circular polarization has been detected
in about half of non-repeating FRBs [5–7] 2, for which the polariza-
tion was detectable. Linear polarization has been detected in almost
all repeating FRBs. In contrast, circular polarization is only seen in
one repeating source FRB 20201124A [8].

Out of more than 600 published FRBs, only two, namely FRB
20121102A and FRB 20190520B, are found to coincide with a com-
pact persistent radio source (PRS). We also revealed their extreme
activity [9,10] and significant frequency evolution of linear polar-
ization [7]. These facts suggest that these two sources are in com-
plex plasma environment, either young in FRBs’ evolution or a
special sub-population of FRBs.

In this study, we reported new detections of circular polariza-
tion of both FRBs 20121102A and 20190520B by the Five-
hundred-meter Aperture Spherical radio Telescope (FAST) [11],
thus tripling the size of repeating FRB sample with circular
polarization.

FRB 20121102A is the first precisely-localized repeating FRB
[12]. FRB 20121102A has almost 100% linear polarization at
4–8 GHz [13]. In contrast, it has no linear polarization at
1.25GHz [7,9] thus no measurable RM. The depolarization toward
lower frequencies can be well explained by RM scatter due to mul-
tipath propagation [7,14]. In fact, such frequency evolution of
polarization seems to be a unified feature of all active repeaters
[7]. FAST detected 1652 independent bursts in 59.5 h spanning
62 days [9], resulting in a bimodal energy distribution. Further
analyses of the same dataset revealed circular polarization in
twelve bursts. The largest degree of circular polarization is about
64%. FRB 20190520B is the first persistently active FRB, discovered
through the Commensal Radio Astronomy FAST Survey (CRAFTS)
[15] and then localized by the Karl G. Jansky Very Large Array
(VLA)-realfast system [10]. Similar to FRB 20121102A, FRB
20190520B has no linear polarization at 1.25GHz [7] because of
RM scatter. Further analyses of the FAST sample in Ref. [10]
revealed circular polarization in three bursts. The details of the
observations and data reduction can be found in Supplementary
materials A. The time of arrival and the degree of circular polariza-
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Fig. 1. Polarization profiles of twelve bursts with circular polarization of FRB 20121102A (A 01–12) and three bursts of FRB 20190520B (B 01–03) with FAST. The black, red
and blue lines represent Stokes I, the linear polarization and Stokes V, respectively.
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tion of each pulse can be found in Table S1 (online). The polariza-
tion pulse profiles are shown in Fig. 1.

We then present spectral and temporal properties of the circu-
lar polarization. We show the dynamic spectra of Stokes V and flux
density of Stokes V over frequency for six bursts with significant
circular polarization in Fig. S1 (online). We did not detect any oscil-
lation or sign change of circular polarization over frequency. In our
sample, the circular polarization remained rather constant during
2399
the duration of any single burst, no sign change nor other
significant variation. For example, we show degrees of circular
polarization across �2 ms of burst 3, 8, 11 of FRB 20121102A in
Fig. S2 (online). The degrees of circular polarization remain rela-
tively constant in � ms time-scale and the variations are within
the ranges of error bars.

We consider two categories of mechanisms for generating cir-
cular polarization, namely processes during propagation versus
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radiation mechanism intrinsic to the FRB source. During propaga-
tion, multipath propagation and Faraday conversion [16,17] could,
in some circumstances, generate circular polarization. Multipath
propagation occurs when the electromagnetic radiation propagates
in an inhomogeneous magneto-ionic environment. As these two
FRBs have the largest RM scatter [7] corresponding to substantial
surrounding electron density and complexities, they would have
a better chance to have multipath propagation induced circular
polarization than other FRBs. However, we demonstrated that the
observed significant frequency-averaged circular polarization is
unlikely induced by multipath propagation (Supplementary mate-
rials B). Faraday conversion is a relatively weak effect and gener-
ates observable circular polarization only when propagating
through an extremely magnetized region with magnetic field
reversals or propagating through strongly magnetized plasma con-
sisting of relativistic electrons. As the two FRBs have complex envi-
ronments, Faraday conversion could take place, but should remain
rare because only a small fraction of bursts have observable circu-
lar polarization.

Finally, we consider radiation mechanism intrinsic to the FRB
source. The observed circular polarization may originate within
the magnetosphere of a magnetar, an increasingly favored origin
of FRBs. Circular polarization is commonly seen in pulses from
magnetars. The rarity of circularly polarized FRB bursts indicate
similar conditions should be rare in FRB sources, even if the gener-
ation of circular polarization goes through analogous processes.
We note that there are some variations on circular polarization
between two adjacent bursts, as shown in Table 1. The difference
of circular polarization might be due to the different magnetic field
configurations or different beaming directions deviating from the
line of sight, if the radiation mechanism is the coherent curvature
radiation [18–20].

We then compare the circular polarization properties of these
two active repeating FRBs with those of non-repeating FRBs. It
seems that the circular polarization of the non-repeating FRBs is
different from the repeating FRBs. The variation time-scale of the
circular polarization of the non-repeating FRBs can be smaller than
1ms. For example, the degree of circular polarization of FRB
20190611B varies from 15% to 57% in �1ms [6]. The degree of cir-
cular polarization of FRB 20181112A varies from �34% to 17% in
less than �0.1ms [5]. The variation time-scale of the circular polar-
ization of the non-repeating FRBs is much smaller than that of the
repeating FRBs. The circular polarization of the non-repeating FRBs
has been attributed to intrinsic radiation mechanism or the result
of propagation through a relativistic plasma close to the source [5].
The short, millisecond-scale variation of the circular polarization of
the non-repeating FRBs seems to favor intrinsic processes as they
are closer to the presumed compact object.

Our observations have tripled the size of repeating FRB sample
with circular polarization. The observed circular polarization is
unlikely induced by multipath propagation. Our observations favor
circular polarization induced by Faraday conversion or radiation
mechanism intrinsic to the FRB source. The conditions to generate
circular polarization have to be rare in either case, as there are only
about 1% and 4% of bursts being seen with circular polarization for
FRB 20121102A and FRB 20190520B respectively, much less than
the �50% for non-repeating FRBs. Further, systematic study of cir-
cular polarization will shed critical light on the environment and
radiation mechanisms of repeating FRBs with this growing sample.
Data availability

The data of the fifteen bursts and the calibration files are openly
available in Science Data Bank at https://doi.org/10.57760/scien-
cedb.04389.
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