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Abstract

The detection of fast radio bursts (FRBs) in radio astronomy is a complex task due to the challenges posed by radio-
frequency interference and signal dispersion in the interstellar medium. Traditional search algorithms are often
inefficient, time-consuming, and generate a high number of false positives. In this paper, we present DRAFTS, a deep-
learning-based radio fast transient search pipeline. DRAFTS integrates object detection and binary classification
techniques to accurately identify FRBs in radio data. We developed a large, real-world data set of FRBs for training
deep-learning models. The search test on Five-hundred-meter Aperture Spherical radio Telescope real observation
data demonstrates that DRAFTS performs exceptionally in terms of accuracy, completeness, and search speed. In the
re-search of FRB 20190520B observation data, DRAFTS detected more than 3 times the number of bursts compared to
HEIMDALL, highlighting the potential for future FRB detection and analysis.

Unified Astronomy Thesaurus concepts: Radio transient sources (2008); Convolutional neural networks (1938);
Astronomy software (1855); Astronomy databases (83)

1. Introduction

Fast radio bursts (FRBs) have emerged as a new focus of
research in radio astronomy, characterized by extremely brief
instances of radio pulses (D. R. Lorimer et al. 2007). FRBs are
of great significance for probing the distribution and evolution
of cosmic matter, as well as for the study of fundamental
physics (B. Zhang 2023). To date, approximately 800 FRB
sources have been reported (J. Xu et al. 2023), the vast majority
of which have been observed only once, while a few sources
exhibit unusual activity (D. Li et al. 2021; Y.-K. Zhang et al.
2022, 2023). However, their underlying physical mechanisms
remain unclear. With increasing global participation and the
introduction of new telescopes, it is expected that tens of
thousands of FRBs will be discovered in the near future. This
creates the challenge of identifying these short-duration
transient luminous events within the vast amounts of radio
data. Therefore, the development of an efficient algorithm for
real-time FRB detection is of paramount importance.

The search for FRBs can be considered a task of extracting
signals with certain characteristics from noise and interference.
Figure 1 displays the data from two FRBs collected by a radio
telescope, with intense radio-frequency interference (RFI) present
in both data segments, such as the persistent signals near
1200–1300MHz. In addition to the interference demonstrated in
these two data segments, there are more complex types of RFI that
actually exist. RFI can be categorized based on variability and
frequency range into time-variable RFI/frequency-variable RFI,
narrowband interference, and broadband interference. The sources

of RFI are diverse, including cell phones, power lines, artificial
satellites, lightning, etc., and represent a common problem for all
radio telescopes worldwide. Since the interference signals are
closer to the telescope than astronomy signals, their intensity is
usually orders of magnitude higher than that of astronomy signals,
which can cause the latter to be obscured.
The characteristic that distinguishes FRB signals from RFI is

dispersion. Dispersion occurs as radio signals propagate through
the interstellar medium where the speed of signals varies across
frequencies, resulting in signals that typically last only a few
milliseconds being stretched by a factor of thousands. Conse-
quently, the energy, which would have been concentrated, is
dispersed over several seconds of data, causing the signal to
become submerged in noise and be difficult to detect. The
relationship between time delay and frequency is quadratic,
forming a parabola, and can be calculated by the following
equation:
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where -n nt t2 1 (in seconds) denotes the time delay between two
observation frequencies, ν1 and ν2 (in MHz). The term DM (in
pc cm−3) represents the dispersion measure, which quantifies the
integrated column density of free electrons along the signal’s
propagation path . Hence, radio signals emanating from different
locations in the Universe will have different DM values, leading
to varying time delays. We can identify the presence of strong
signals from Figure 1, where the time delay of the signal at
different frequencies takes on a parabolic form. Bursts
originating from different locations in the Universe manifest as
parabolas of different curvatures in such data. However, weak
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bursts are submerged and indistinguishable within the data, and
such weak signals are much more frequent than strong bursts.

Therefore, the challenge is to identify faint parabolic-shaped
signals from radio data amidst RFI. In this paper, we present
DRAFTS,9 a deep-learning-based radio fast transient search
pipeline, designed for real-time detection of FRBs. DRAFTS is a
multistage pipeline that integrates object detection and binary
classification to efficiently identify FRBs, as illustrated in
Figure 2. Trained on an extensive data set containing both real
FRBs and non-FRB signals, DRAFTS demonstrates high
performance in terms of detection speed, accuracy, and
completeness.

The pipeline’s ability to quickly detect FRBs is crucial for
advancing scientific discovery, which allows for timely follow-

up observations, enhancing our ability to study the dynamic
properties of FRBs and their environments (E. Petroff et al.
2022). Moreover, DRAFTS’ high completeness ensures a more
thorough detection of faint and rare FRBs, which are critical
for understanding the statistical properties of these phenomena
(Y.-K. Zhang et al. 2024). A more complete data set enables
robust statistical analyses, helping to uncover the origins of
FRBs and explore their connection to other cosmic processes
(B. Zhang 2023). This comprehensive approach will support
future investigations into the distribution, evolution, and
physical mechanisms behind FRBs, ultimately contributing to
our broader understanding of the Universe.

2. Related Works

2.1. Traditional Methods

In traditional search algorithms, the process generally includes
the following steps (J. M. Cordes & M. A. McLaughlin 2003).
Based on a threshold to eliminate RFI, a series of DM grids are

Figure 1. Radio data of two FRBs. The top and bottom rows show signals of two bursts, one strong and one weak, respectively. From left to right, the first column
displays the original data from the radio telescope, with time on the horizontal axis and frequency on the vertical axis. The second column presents the time–dispersion
measure (DM) signals obtained after dedispersing the original data using a series of DM values. The third column shows the time–frequency data after dedispersion
with the optimal DM value. The fourth column depicts the time–frequency data after RFI mitigation from the data in the third column.

Figure 2. The workflow of DRAFTS. The purple line segments below the figure divide the workflow into three steps, which are detailed in Section 3.

9 The code for DRAFTS is available on GitHub at https://github.com/
SukiYume/DRAFTS. The training data sets are available on Hugging Face at
https://huggingface.co/datasets/TorchLight/DRAFTS. The trained models
are available on Hugging Face at https://huggingface.co/TorchLight/
DRAFTS.
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set, and the data is dedispersed accordingly. After that,
integration along the frequency direction yields a time series
for that DM value. Different widths of boxcar filters are used to
match the time series, and the signal-to-noise ratio (S/N) is
calculated. Finally, signals that exceed the S/N threshold are
selected as candidate signals. Many current tools are based on
this process, such as PRESTO (S. M. Ransom 2001) and
HEIMDALL (B. R. Barsdell et al. 2012). This also constitutes the
mainstream method for searching for FRBs.

This method is very intuitive and aligns well with our
empirical approach to data processing. However, it strongly
depends on both the algorithm used for interference mitigation
and the choice of parameters. During data processing,
interference that cannot be eliminated might remain, and new
artificial data interference can be introduced as a result of the
interference mitigation process. Additionally, the computa-
tional complexity is very high, with a lot of redundant
calculations, and the same signal can be detected on different
DM values, leading to inefficient operation. This ultimately
results in incomplete outcomes and the generation of numerous
false signals, requiring manual intervention in the data-
processing procedure and selection of real signals from among
many false positives. Therefore, this methodology cannot meet
the demands of the increasing data volumes expected in the
future.

2.2. Deep-learning Methods

With the progress of machine learning, especially deep
learning in recent years, more researchers are utilizing deep-
learning methods to address the issues inherent to traditional
approaches. In radio astronomy, deep learning has been widely
applied to problems such as the classification of radio galaxies
(K. Brand et al. 2023), the elimination of RFI (J. Akeret et al.
2017), and the reconstruction of radio images (A. Dabbech
et al. 2024). A problem like ours, which involves searching for
a specific pattern in two-dimensional data, can be addressed as
a computer vision problem.

Some researchers, acknowledging the large number of false
signals generated by traditional search methods, have attempted
to apply deep-learning techniques for the binary classification
of detected candidate signals as genuine or spurious (L. Connor
& J. van Leeuwen 2018; D. Agarwal et al. 2020). These
methods have reduced the manual workload required for signal
verification to some extent and have improved the efficiency of
the search process. However, they do not address other issues
associated with traditional search algorithms, particularly the
problem of search incompleteness.

Furthermore, there are also attempts to use deep-learning
models to directly detect “parabolic” signals in raw data
(Y. G. Zhang et al. 2018; Y.-L. Liu et al. 2022). However, there
are two main problems with this approach. First, weak signals,
which are stretched over time, can be inconspicuous in images,
making this search method prone to missing such faint signals.
The second issue is the variability in the curvature of the
parabolic trails in the imagery due to the different DMs
associated with FRBs emanating from various locations. This
variability makes it challenging to fix the length of input data in
a blind search, as incomplete coverage of a burst event in the
input data could lead the model to overlook the signal.
Additionally, even when a signal is detected, the method
identifies only its arrival time in the data set and does not

provide dispersion values, calling for further processing to fully
characterize the burst.

2.3. Object Detection

Object detection is one of the most critical branches in the
field of computer vision and has a wide range of applications in
daily life, such as video surveillance and autonomous driving.
It aims to understand the visual content within digital images or
videos. Object detection not only identifies the categories of
objects in the image but also locates their positions within it. In
recent years, along with the rapid development of deep-learning
networks, the performance of object detectors has been
significantly improved (L. Jiao et al. 2019).
Within the realm of deep-learning object detection methods,

there are generally two types: anchor-based and anchor-free
methods. Anchor-based methods, such as the RCNN series
(R. Girshick et al. 2014; R. Girshick 2015; S. Ren et al. 2015;
K. He et al. 2017) and YOLO series (J. Redmon et al. 2016;
J. Redmon & A. Farhadi 2018; A. Bochkovskiy et al. 2020;
Z. Ge et al. 2021; C. Li et al. 2022; C.-Y. Wang et al.
2022, 2024), operate by predefining a series of fixed boxes
(known as anchors) in the image and then predicting the
position and categories of objects based on these anchors.
Although this method performs well, it has certain limitations.
For example, detection performance is highly sensitive to the
size, quantity, and aspect ratio of anchors; fixed-size anchors
lead to lower detection performance for small-scale objects.
Moreover, to match the actual object boxes, it is necessary to
enumerate all the possible positions and sizes of targets,
leading to sample imbalance and a significant waste of
computation.
In contrast, anchor-free methods abandon the predefined

anchor approach and directly predict the key points of objects
to determine their positions. These methods simplify the model
structure and reduce computational load, offering faster
detection speeds. CenterNet is a typical anchor-free object
detection model (X. Zhou et al. 2019). It locates and recognizes
objects by detecting the central point of each object in the
image and regressing from the center point to the target size.
CenterNet does not require complicated anchor-box setups and
does not rely on complex candidate region proposal steps,
making the model structure more straightforward and sig-
nificantly reducing computational costs during training and
inference. Additionally, CenterNet exhibits greater robustness
in detecting small and densely distributed objects. And indeed
what we need is precisely the target’s central point, which is
where CenterNet excels. Therefore, we choose to use
CenterNet as our model for the object detection stage.

2.4. Image Classification

Image classification, which is also a fundamental task in
computer vision, has undergone significant advancements over
the past few decades. The evolution of this field has been
marked by several key milestones and technological break-
throughs, particularly in the era of deep learning (W. Rawat &
Z. Wang 2017). The resurgence of convolutional neural
networks (CNNs) began in 2012 with the introduction of
AlexNet (A. Krizhevsky et al. 2012). This deep-CNN
architecture achieved unprecedented accuracy in the ImageNet
data set (J. Deng et al. 2009), significantly outperforming
traditional methods. This watershed moment sparked a renewed
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interest in deep learning for image classification and initiated a
period of rapid development in the field.

Following AlexNet, a series of increasingly sophisticated
CNN architectures were proposed, each pushing the boundaries
of image classification performance. Notable examples include
VGGNet (K. Simonyan & A. Zisserman 2014), GoogLeNet
(C. Szegedy et al. 2015), and ResNet (K. He et al. 2016). These
developments not only improved classification accuracy but
also enhanced the efficiency and scalability of CNN models.
The progress in CNN architectures was accompanied by
advancements in optimization techniques, regularization meth-
ods, and data augmentation strategies, further boosting
performance (Z. Lu et al. 2021).

In recent years, the focus has shifted toward developing more
efficient and compact models for real-world applications. This
has led to the emergence of architectures like MobileNet and
EfficientNet, which prioritize computational efficiency without
significantly compromising accuracy (A. G. Howard 2017). The
rapid evolution of image classification techniques has had far-
reaching implications across various domains.

ResNet, as one of the most reliable and widely used
architectures for image classification tasks, has been proven
effective across various applications due to its ability to
mitigate the vanishing gradient problem through the introduc-
tion of residual connections. In this work, we also adopt
ResNet as the backbone architecture for the second stage of the
DRAFTS pipeline.

3. Method

DRAFTS identifies the arrival time and DM of signals within the
data. This approach addresses the incompleteness, low operation
efficiency, and dependence on manual inspection of a large
number of false signals characteristic of traditional methods. The
flowchart of our search pipeline is shown in Figure 2.

Note that in Figure 1’s fourth column, the signal’s S/N is
highest and the width is narrowest when the data is dedispersed
with the correct DM value. As the DM value deviates from the
optimum, the S/N of the signal decreases, and the width of the
signal broadens. Hence, in the time–DM plot (Figure 1’s third
column), bursts manifest a “bow-tie” pattern. The coordinates
at the center of the “bow tie” correspond to the burst’s arrival
time and DM value.

Accordingly, in this pipeline,

1. We apply a range of DM values to dedisperse the data,
transforming the original time–frequency data into time–
DM data. During this process, we use numba.cuda
(S. K. Lam et al. 2015) for acceleration. Tests have
shown that numba.cuda can reduce the dedispersion-
processing time on an RTX 2070S to one-thousandth of
the same processing time on an Intel i7-10700K.

2. Subsequently, the time–DM data is fed into a pretrained
object detection model (here CenterNet X. Zhou et al.
2019) to detect the signal’s arrival time and DM value. At
this step, instead of converting data into image files and
reading it into the model for detection, we directly input
the data stream, saving input/output time.

3. Based on the arrival time and dispersion measure found
through object detection, the signal is extracted from the
original data, and a pretrained classification model (here
ResNet K. He et al. 2016) is employed to determine the
authenticity of the signal.

The use of object detection ensures that the same signal is
not repeatedly detected, and the occurrence of false signals is
rare. Even if a false signal is detected, it will undergo secondary
validation by the classification model, meaning that manual
inspection is virtually unnecessary, and search efficiency is
greatly enhanced.
It is also worth mentioning that for follow-up observations of

FRBs with known DM values, one could rely solely on the
classification model for detection. We could first uniformly
dedisperse the observation data according to its specific DM
value and then segment the data, allowing the classification
model to directly determine whether there are signals similar to
those in Figure 1’s fourth column within the data slices.

3.1. Data and Augmentation

Object detection. To train our object detection model, we
utilized a data set comprising 2728 bursts detected by the Five-
hundred-meter Aperture Spherical radio Telescope (FAST)
from FRB 20121102A (D. Li et al. 2021) and FRB 20220912A
(Y.-K. Zhang et al. 2023).
We began by dedispersing the original time–frequency data

with dispersion measures ranging from 1–1024 pc cm−3, with a
step size of 1 pc cm−3, totaling 1024 DM values. During the
process of dedispersion, we divided the data into three frequency
slices: low frequency (1000–1250MHz), high frequency
(1250–1500MHz), and full frequency (1000–1500MHz). This
division enhances the detection of narrowband bursts, allowing us
to capture signals that may only appear within a specific
frequency range.
After segmenting the time–DM data, we performed manual

labeling. The labels for files can be seen in Table 1, where each
row corresponds to a burst. The same file name may appear
multiple times, indicating multiple bursts within the same file.

Table 1
Example Labels for Data Used in Object Detection

File Name
Frequency

Slice
Time
Center

DM
Center Time Width

DM
Height

0000.npy 0 7743.7 564.66 7613.21 627.03
0000.npy 1 −1.0 −1.0 −1.0 −1.0
0000.npy 2 7766.73 554.11 7551.8 657.74
0001.npy 0 628.03 552.19 221.21 602.09
0001.npy 1 612.68 554.11 259.59 594.41
0001.npy 2 −1.0 −1.0 −1.0 −1.0
0002.npy 0 1134.65 551.23 1011.84 619.36
0002.npy 1 −1.0 −1.0 −1.0 −1.0
0002.npy 2 1142.33 552.19 973.46 625.11
0003.npy 0 2347.46 548.35 1909.93 603.05
0003.npy 1 2339.79 548.35 1963.66 592.49
0003.npy 2 −1.0 −1.0 −1.0 −1.0
0004.npy 0 5609.77 548.35 5348.79 591.53
0004.npy 0 7567.16 558.91 7267.79 634.71
0004.npy 1 5602.09 551.23 5287.38 592.49
0004.npy 1 7582.51 553.15 7359.9 598.25
0004.npy 2 5617.45 550.27 5533.01 590.57
0004.npy 2 7620.89 552.19 7382.93 609.76
0005.npy 0 3867.31 551.23 3690.77 608.8
0005.npy 1 −1.0 −1.0 −1.0 −1.0
0005.npy 2 3844.29 547.39 3721.47 611.68

Note. The two rows in bold represent examples where multiple bursts are
labeled in the same file, while the row in italic shows an example where no
bursts were found in the frequency slice of that file.
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The labels include the frequency slice, center point of the burst
in the data, along with the half-width and half-height of the
burst. For frequency-slicing labels, 0 represents the full
frequency, 1 denotes the low-frequency slice, and 2 indicates
the high-frequency slice. A label of −1, −1, −1, −1 indicates
that there was no burst in the file.

During training, we standardized the transformation of images
to a size of 512× 512. To ensure that the model’s training results
are robust, transferable, and capable of detecting signals of various
shapes, we increased data variability by applying random
cropping (as shown in Figure 3), and random combining of one
to five files (as shown in Figure 4).

Binary classification. To train our classification model, we also
utilized the data set of 2728 bursts detected by FAST. This time

we rely on the time–frequency data after dedispersion. We
uniformly process the original data using a DM value of
565 pc cm−3 for FRB 20121102A and 220 pc cm−3 for
FRB 20220912A for dedispersion, and isolate the data segments
containing bursts for training purposes. We then perform data
augmentation to increase the diversity of the data, as shown in
Figure 5. The augmentation process includes the following steps:

1. Each frequency channel of the data is divided by its mean
value, and the data’s numerical range is confined to its
10%–90% dynamic range to boost the S/N as much as
possible.

2. Randomly combine one to five images into a single
image to increase the robustness and generalizability of
the model. Figure 5 illustrates the case of merging three

Figure 3. Data augmentation for object detection—random clipping. The figure illustrates the process of random clipping applied to the input data. The first column
displays the original input images, the second column shows the images after random cropping with green boxes indicating the ground-truth labels, and the third
column presents the center points after Gaussian scattering, which are used for CenterNet training.

Figure 4. Data augmentation for object detection—random combination. This figure demonstrates four examples of the random combination applied to the
training data.

5

The Astrophysical Journal Supplement Series, 276:20 (16pp), 2025 January Zhang et al.



and four images; if there are four images, they are
randomly combined horizontally, vertically, or in a 2× 2
configuration. In other instances, images are randomly
concatenated along either the horizontal or vertical axis.

3. Artificial interference is introduced into the data using
random numbers to avoid the inability of a limited data set
to cover as many RFI morphologies as possible, which
would result in the model failing to generalize to new data
or data from other telescopes. The interference we add
includes broadband interference with a DM of 0 pc cm−3,
narrowband interference that varies over time or is
invariant with time, as well as some random scatter points.

4. Randomly rotate and flip the images.

All training data are finally transformed to a size of
512× 512.

3.2. Training and Inference

For object detection, we constructed a minimal implementa-
tion of CenterNet based on PyTorch (A. Paszke et al. 2019).
The input is data with dimensions of 1× 512× 512. The
chosen backbone for the network is ResNet18, with a
comparative use of ResNet50. The output is an array with a
size of 5× 128× 128, where the first channel represents the
center point, the subsequent two channels denote width and
height, and the final two channels correspond to the offset of
the center point. Since CenterNet predicts object centers on a
128× 128 heatmap, which is a “4× downsampling” of the
original 512× 512 data, each cell on this heatmap corresponds
to multiple pixels in the original data. This “downsampling”
can lead to inaccuracies in center-point prediction. The offset is
used to correct these potential localization errors, enhancing the
precision of object-center predictions. Consequently, the loss

function of CenterNet is comprised of these three components

( )l l= + +    2center size size offset offset

where center is the focal loss (T.-Y. Lin et al. 2017) for the center
point,size is the smooth L1 loss (R. Girshick 2015) for the width
and height, and 2015b is the smooth L1 loss for the offset.
Owing to the high precision required for the center-point

localization, we set the weight λsize= 0.1, which has a lesser
association with the center point, and λoffset= 1.0. We
employed the Adam optimizer (D. P. Kingma & J. Ba 2014)
along with a CosineLRScheduler strategy (I. Loshchilov &
F. Hutter 2016) for the learning-rate decay. The training
parameters are presented in Table 2.
For classification model, we utilized the ResNet18 archi-

tecture as our classification model, with a comparative use of
ResNet50. The model’s input is an array of size 1× 512× 512,
with the output being a probability ranging from 0 to 1,
activated by the sigmoid function. The loss function employed
is BCELoss, accompanied by the Adam optimizer along with a
CosineLRScheduler strategy for the learning-rate decay.
Training parameters are analogous to those used for CenterNet,
with the exception of the batch size, which is set to 32.

4. Experiments

We evaluate our model’s performance utilizing the independent
data set from “FAST data set for Fast Radio bursts EXploration”
(FAST-FREX; G. Xuerong et al. 2024). This data set comprises
600 burst samples originating from three distinct FRBs. Each
burst is stored within a FITS file, which contains approximately
6.04 s of data, along with the best DM value for each burst.
We deploy both the object detection model and binary

classification model to search for bursts within the data set,
contrasting these techniques with PRESTO as a baseline.
All experiments were carried out on a computer with Intel
i7-10700K, RTX 2070S, and 32 GB memory.
For the PRESTO search, we adhere to the standard workflow

involving the utilization of rfifind, prepsubband, and
single_pulse_search commands, sequentially conducting
RFI mitigation, generating time-series data through dedispersion
at a set of DM values, and searching for potential high-S/N events
within the time-series data. Owing to the slow processing times of
this tool, we limit our dedispersion to 100 DM values per file,
centered around the burst’s optimal DM. For instance, if a burst
has a dispersion measure of 550 pc cm−3, we select DM values
ranging from 500 to 599 pc cm−3, with a step size of 1 pc cm−3.
Despite this restriction, PRESTO still requires an average of 120 s
to process a 6 s file. After generating time series for 100 DM

Figure 5. Data augmentation for binary classification. The first column is the input data, the second column is the data after enhancement, and the third and fourth
columns are the data after adding interference and randomly combining.

Table 2
Training Parameters for CenterNet

Parameter Value

Batch Size 4
Learning Rate (LR) 1e-3
Number of Epochs 100
Warm-up Epochs 5
Initial Warm-up LR 1e-5
Minimum LR 1e-5
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values, we conduct a single-pulse search and compile the results.
We record the number of detected bursts, missed bursts, false
positives, and the total count of duplicate detections for the same
burst at different DM values at S/N thresholds of 3, 5, and 7.

For the search using our object detection model, we employ
ASTROPY (A. M. Price-Whelan et al. 2022) to read the time–
frequency data saved in FITS files. We process dedispersion for
DM values from 1–1024 pc cm−3 with a step of 1 pc cm−3 using
numba.cuda, converting the original time–frequency data to
time–DM data, and input this into the pretrained centernet model
for prediction. Based on the predicted bounding-box centers, we
determine the arrival times and DM values of the detected bursts
and tally the number of bursts found, missed, and falsely identified.
The model applies nonmaximum suppression during prediction,
thereby eliminating multiple counts of the same burst, and thus we
do not record duplicates. The CenterNet model, when using
ResNet18 as the backbone, processes a 6 s file in roughly 4.5 s,
and with ResNet50 as the backbone, needs about 4.7 s, both
including the time for file reading, writing, and dedispersion.

Regarding the search performed by our binary classification
model, we similarly utilize ASTROPY to read time–frequency
data from FITS files. We perform uniform dedispersion based
on the DM values for the three FRB sources, then partition the
data into nonoverlapping segments, resize these to 512× 512,
and feed them into the trained ResNet model to determine the
presence of bursts within the data segments. We also tabulate
the number of bursts found, missed, and falsely identified. The
process leveraging ResNet18 and ResNet50 are both around
1.2 s to handle a 6 s file, both including the time for file reading,
writing, and dedispersion. The results are shown in Table 3.

As the benchmark, PRESTO exhibits an increasing aptitude to
recall signals as the S/N threshold is lowered. However, the
increment in genuine signals from an S/N drop from 5 to 3 is
markedly less than that experienced in a reduction from 7 to 5,
while the number of spurious signals has surged considerably.
The optimal recall rate peaked at 86.7%. Notably, our
application of PRESTO was confined to processing only 100
DM values. If we were to extend the dedispersion to 1024 DM
values, akin to CenterNet, the computational burden would
escalate by an order of magnitude, implying a tenfold increase
in data-processing time. This would lead to an increase in false
signals without a commensurate rise in real ones.

In stark contrast, the object detection and classification
models both approach a near-perfect recall rate, also upholding

exceedingly high precision, thus demonstrating efficiencies far
exceeding those of traditional search methods. Figure 6
illustrates some signal examples inferred through CenterNet,
which highlights the model’s resilience; it adeptly discerns the
“bow-tie” signature characteristic of FRBs, despite the
significant scale variances occurring due to the disparities in
signal strength of FRB events, spanning several orders of
magnitude. The model’s robustness is showcased as it remains
functional even under the challenging conditions posed by such
intense variations in the magnitude of the signal bursts.
To demonstrate the effectiveness of our classification model,

specifically its ability to accurately identify the presence of a
burst in an image and thus classify the data as true, we utilize
Grad-CAM++ (A. Chattopadhay et al. 2018) to visualize the
regions in the image that significantly influence the network’s
decision. Gradient-weighted class activation mapping (Grad-
CAM) is a technique that provides visual explanations for
decisions made by CNNs (R. R. Selvaraju et al. 2017). It
generates class-specific activation maps using gradient infor-
mation, highlighting the important regions in the input image
that contribute to the model’s prediction. The process involves
computing gradients of the target class score concerning feature
maps of the last convolutional layer, which are then globally
averaged to obtain the importance weights. Grad-CAM++ is
an enhanced version of Grad-CAM that offers more precise and
detailed visual explanations, especially when multiple objects
are present in the image (A. Chattopadhay et al. 2018).
Figure 7 shows the results of Grad-CAM++ visualization,

containing eight instances of data classified as true by the
model. Columns in Figure 7 represent the original data, the
visualization of the critical regions influencing the network’s
decision using Grad-CAM++, and the result of superimposing
these regions on the original data. It is evident that the model’s
attention is indeed focused on the location of the burst. Even
when the burst is at the edge (Figures 7(B) and (D)), or there is
strong interference in the data (Figures 7(F) and (G)), even in
the noise-injected data (Figure 7(H)), the model can still make
accurate and effective judgments.
Additionally, we observe that ResNet50 performs similarly

to ResNet18 in both object detection and classification
frameworks. Therefore, to balance computational efficiency
with model performance, we choose ResNet18 as the backbone
network for both CenterNet and the classification model.

Table 3
Performance Comparison of Different Methods

Method Thresholda TP FP Missed Duplicates Precision Recall Time
(%) (%) (s)

Presto S/N = 3 520 10,663,950 80 43,044 0.0049 86.7 ∼120
Presto S/N = 5 513 17,406 87 40,818 2.8 85.5 L
Presto S/N = 7 477 4488 123 25,402 9.6 79.5 L

CenterNet-18 P = 0.5 580 23 20 L 96.2 96.7 4.51
CenterNet-50 P = 0.5 578 20 22 L 96.7 96.3 4.67

ResNet18 P = 0.5 600 1 0 L 99.8 100 1.16
ResNet50 P = 0.5 600 1 0 L 99.8 100 1.23

Note.
a For CenterNet and ResNet, P represents the probability that the model’s predicted data contains a true signal, with values ranging from 0 to 1. A threshold of P > 0.5
is used to classify a prediction as a true signal.
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Figure 6. Examples of detected signals using CenterNet. The green boxes indicate the ground-truth labels, and the red boxes are the predicted labels.

Figure 7. Examples of detected signals using ResNet. A–H are eight instances of data classified as true by the classification model, where 1, 2, and 3 represent the
original data, the regions in the image that significantly influence the network’s decision visualized using Grad-CAM++, and the result of superimposing these
regions on the original data, respectively.
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5. Applications to FRB 20190520B

To further validate the capability of DRAFTS, we applied the
model to the 2020 FAST observation data of FRB 20190520B.
In C. H. Niu et al. (2022), the discovery of FRB 20190520B
was reported, and multiple observations of this FRB were
conducted between 2020 April 24 and 2020 September 19.
During this period, a total of 75 bursts were detected using
HEIMDALL, with an estimated event rate of -

+ -4.5 hr1.5
1.9 1. The

details of each observation, including the start time and
duration of each session, are listed in Table 4.

We re-searched this data using DRAFTS and detected all 75
previously discovered bursts, along with an additional 183 new
bursts, more than doubling the original number of detected
bursts and bringing the maximum event rate during this period
to 28.6 hr−1. The arrival times of these 183 bursts are listed in
Table 5, and their dynamic spectra are shown in Figure 10 in
Appendix B.

We further estimated the event rate during this period using
waiting-time analysis. Figure 8 shows the waiting-time
distribution of FRB 20190520B, including the newly detected
bursts. Although the left peak is not very prominent, the overall
distribution still exhibits a bimodal pattern, with the right peak
corresponding to the FRB’s active phase (Y.-K. Zhang et al.
2024). We fitted the waiting-time distribution for intervals
longer than 1 s using both exponential and Weibull distribu-
tions. For the fitting, we employed the EMCEE package to
perform maximum-likelihood estimation of the fitting para-
meters. For the exponential distribution, we defined the
likelihood function as

( ∣ ) ( ) ( )ål l= l-L t elog 3
i

t

where t represents the waiting time, and 1/λ corresponds to the
event rate.

For the Weibull distribution, the likelihood function is
defined as

( ∣ ) ( )( )ål
l l

= l
-

-L k t
k t

e, log 4
i

k
t

1
k⎡

⎣⎢
⎛
⎝

⎞
⎠

⎤
⎦⎥

where k is the shape parameter and λ is the scale parameter.
The event rate corresponds to the reciprocal of the Weibull
distribution’s expected value, i.e., 1/[λΓ(1+ 1/k)].
As shown in Figure 8, both distributions provide a good fit to

the waiting-time distribution of FRB 20190520B. The event rate
estimated from the exponential fit is -

+ -15.29 hr0.99
1.02 1, while the

Table 4
FAST Observation Details of FRB 20190520B

Date Start MJD (topocentric) Duration Old Number (C. H. Niu et al. 2022) Added Number (This Paper) Total Number Average Burst Rate
(minutes) (hr−1)

20200424 58963.742361111 108.0 2 4 6 3.3
20200522 58991.664768519 118.0 13 9 22 11.2
20200730 59060.475694444 16.0 1 3 4 15.0

59060.494490741 91.9 2 15 17 11.1
20200731 59061.490902778 83.1 12 16 28 20.2
20200806 59067.462800926 14.1 1 1 2 8.5

59067.479467593 79.6 5 33 38 28.6
20200808 59069.451388889 10.4 0 1 1 5.8

59069.465277778 90.0 3 27 30 20.0
20200810 59071.445833333 14.5 0 2 2 8.3

59071.462141204 87.0 3 8 11 7.6
20200812 59073.441342593 10.0 0 1 1 6.0

59073.452627315 93.6 3 13 16 10.3
20200814 59075.437835648 10.9 0 2 2 11.0

59075.451944444 69.5 5 17 22 19.0
20200816 59077.430555556 10.0 0 4 4 23.9

59077.444629630 90.2 20 7 27 18.0
20200828 59089.413194444 60.0 2 10 12 12.0
20200919 59111.346608796 6.7 0 0 0 0.0

59111.356840278 36.4 3 10 13 21.4

Total 1100 75 183 258 14.1

Figure 8. Waiting-time distribution of FRB 20190520B. The red solid line
represents the exponential distribution fit, the red dashed line represents the
Weibull distribution fit, and the blue bars represent the waiting-time
distribution of FRB 20190520B.
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Weibull fit yields an event rate of -
+ -15.29 hr1.07

1.11 1 with a shape
parameter = -

+k 0.94 0.05
0.05. The two estimates are nearly identical

and close to the average event rate estimated in Table 4.
Furthermore, for the Weibull distribution, k is close to 1. In fact,
when k= 1, the Weibull distribution reduces to an exponential
distribution. Therefore, we can reasonably conclude that the bursts
of FRB 20190520B can be considered as samples from a Poisson
process with a constant event rate of 15.29 hr−1, indicating that
this FRB is far more active than previously thought.

Testing on the complete set of real observation data from
FAST further confirms that DRAFTS is effective in detecting
FRBs. The number of bursts identified by DRAFTS is more than
3 times higher than that detected by HEIMDALL, which holds
substantial importance for subsequent statistical analyses.

6. Limitations and Conclusions

As shown in Table 3, the classification model manifests a
recall rate of 100%, while CenterNet’s recall rate is marginally
below this benchmark. Figure 9 embodies the time–frequency
and time–dispersion plots for two specific burst events
identified by the classification model but overlooked by the
object detection model. It is evident from the plots that the
signals from these bursts are exceedingly weak, and the “bow-
tie” feature within the time–dispersion plots is ambiguously
defined—practically invisible to the naked eye. Thus, it is
understandable that these signals eluded detection by the object
detection model.

This calls for the advancement of our methodology
concerning the conversion of raw time–frequency data to
time–dispersion data, with a special emphasis on improving the
visibility of weaker signals. Enhancing this process would
potentially mitigate the issue of nondetection in target models
and lead to a more reliable and efficient identification of
transient astronomical events driven by faint signals.

In conclusion, we have developed a comprehensive training
data set of large-scale, real-world data for FRB searches and
created DRAFTS, an advanced tool that integrates object
detection with binary classification to identify FRBs in radio
data. Our experiments reveal that DRAFTS significantly
outperforms traditional methods in detection speed, accuracy,
and completeness. This pipeline not only facilitates real-time
FRB detection but also holds potential for application in other
radio transient searches.

Future work will focus on enhancing the visibility of faint
signals within time–dispersion plots, improving the overall
efficiency of the search pipeline, and adding more data in
the training set. The deployment of DRAFTS represents a

groundbreaking and reliable approach, offering substantial
benefits for observational campaigns. By employing this
workflow, we anticipate a notable acceleration in the detection
of radio transients, which will in turn drive a deeper
understanding of the physical mechanisms behind these
extreme cosmic events. Furthermore, DRAFTS provides a
powerful impetus and essential tools for exploring the
uncharted territories of the Universe, ultimately contributing
to our broader knowledge of cosmic phenomena.
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Appendix A
Arrival Times of Detected Bursts from FRB 20190520B

We present in Table 5 the arrival times of 75 bursts detected
by Heimdall plus 183 new bursts detected by DRAFTS during
a total of 18.3 hr of observation with FAST from 2020 April 24
to September 19 along with their corresponding observation
dates. On some dates, the observations were divided into two
sessions, which we labeled as Date-1 and Date-2 to indicate the
separate observations on the same day.

Figure 9. Two examples of omitted signals. The first and third columns show the time–frequency plots of two bursts; the second and fourth columns display the time–
DM plots. The expected bursts’ locations in the time–DM plots are marked by red lines.
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Table 5
MJD of Arrival Times for FRB 20190520B

Burst ID MJDa Dateb Burst ID MJDa Dateb Burst ID MJDa Dateb

Newly Detected Bursts Using DRAFTS

B001 58963.753958080 20200424 B062 59067.502978234 20200806-2 B123 59073.458422907 20200812-2
B002 58963.770184740 20200424 B063 59067.503231597 20200806-2 B124 59073.458586656 20200812-2
B003 58963.770865928 20200424 B064 59067.504781097 20200806-2 B125 59073.461018945 20200812-2
B004 58963.808134276 20200424 B065 59067.505167148 20200806-2 B126 59073.464894870 20200812-2
B005 58991.676149829 20200522 B066 59067.506972167 20200806-2 B127 59073.471089860 20200812-2
B006 58991.681677339 20200522 B067 59067.511287838 20200806-2 B128 59073.474148791 20200812-2
B007 58991.687041934 20200522 B068 59067.511635139 20200806-2 B129 59073.483559837 20200812-2
B008 58991.687858426 20200522 B069 59067.513425862 20200806-2 B130 59073.486190472 20200812-2
B009 58991.696814811 20200522 B070 59067.518125365 20200806-2 B131 59073.490224233 20200812-2
B010 58991.701210940 20200522 B071 59067.518575780 20200806-2 B132 59073.505812649 20200812-2
B011 58991.714680346 20200522 B072 59067.518906594 20200806-2 B133 59073.514778195 20200812-2
B012 58991.733097018 20200522 B073 59067.522778481 20200806-2 B134 59075.442356225 20200814-1
B013 58991.739498157 20200522 B074 59067.525342925 20200806-2 B135 59075.443059359 20200814-1
B014 59060.480277680 20200730-1 B075 59067.525688371 20200806-2 B136 59075.458608135 20200814-2
B015 59060.481182843 20200730-1 B076 59067.525748592 20200806-2 B137 59075.460956536 20200814-2
B016 59060.483628231 20200730-1 B077 59067.527927305 20200806-2 B138 59075.464442699 20200814-2
B017 59060.500614681 20200730-2 B078 59067.527976492 20200806-2 B139 59075.467864833 20200814-2
B018 59060.528391399 20200730-2 B079 59067.527977138 20200806-2 B140 59075.471004584 20200814-2
B019 59060.528752528 20200730-2 B080 59067.528148897 20200806-2 B141 59075.471743866 20200814-2
B020 59060.529584944 20200730-2 B081 59067.531950533 20200806-2 B142 59075.471744903 20200814-2
B021 59060.530094435 20200730-2 B082 59069.452864158 20200808-1 B143 59075.472468242 20200814-2
B022 59060.536139806 20200730-2 B083 59069.465588641 20200808-2 B144 59075.477403204 20200814-2
B023 59060.536711714 20200730-2 B084 59069.466031951 20200808-2 B145 59075.479022054 20200814-2
B024 59060.542483004 20200730-2 B085 59069.466841138 20200808-2 B146 59075.479137089 20200814-2
B025 59060.544197134 20200730-2 B086 59069.472180281 20200808-2 B147 59075.481013426 20200814-2
B026 59060.546182273 20200730-2 B087 59069.472342565 20200808-2 B148 59075.482251647 20200814-2
B027 59060.546973407 20200730-2 B088 59069.476379684 20200808-2 B149 59075.486885993 20200814-2
B028 59060.551389491 20200730-2 B089 59069.480358138 20200808-2 B150 59075.487163115 20200814-2
B029 59060.552381810 20200730-2 B090 59069.480654383 20200808-2 B151 59075.488591853 20200814-2
B030 59060.552999128 20200730-2 B091 59069.481851782 20200808-2 B152 59075.489545069 20200814-2
B031 59060.553319676 20200730-2 B092 59069.482092574 20200808-2 B153 59077.431731064 20200816-1
B032 59061.497093144 20200731 B093 59069.486802716 20200808-2 B154 59077.433249180 20200816-1
B033 59061.500199528 20200731 B094 59069.488261607 20200808-2 B155 59077.434196579 20200816-1
B034 59061.503304566 20200731 B095 59069.493983403 20200808-2 B156 59077.435368080 20200816-1
B035 59061.503605827 20200731 B096 59069.496322401 20200808-2 B157 59077.456186297 20200816-2
B036 59061.505380004 20200731 B097 59069.504392562 20200808-2 B158 59077.460669274 20200816-2
B037 59061.507535918 20200731 B098 59069.504842690 20200808-2 B159 59077.466908013 20200816-2
B038 59061.510490722 20200731 B099 59069.504963898 20200808-2 B160 59077.473437142 20200816-2
B039 59061.510702601 20200731 B100 59069.505030985 20200808-2 B161 59077.476236056 20200816-2
B040 59061.513361812 20200731 B101 59069.508373735 20200808-2 B162 59077.477652805 20200816-2
B041 59061.518917368 20200731 B102 59069.510679931 20200808-2 B163 59077.480078652 20200816-2
B042 59061.525294977 20200731 B103 59069.513873763 20200808-2 B164 59089.422578365 20200828
B043 59061.531004139 20200731 B104 59069.514277920 20200808-2 B165 59089.426408841 20200828
B044 59061.532807852 20200731 B105 59069.518708503 20200808-2 B166 59089.428926655 20200828
B045 59061.542664556 20200731 B106 59069.518777351 20200808-2 B167 59089.434616349 20200828
B046 59061.547473763 20200731 B107 59069.519294932 20200808-2 B168 59089.438048012 20200828
B047 59061.548427662 20200731 B108 59069.522911272 20200808-2 B169 59089.443650739 20200828
B048 59067.463647943 20200806-1 B109 59069.525875712 20200808-2 B170 59089.443845199 20200828
B049 59067.480205948 20200806-2 B110 59071.451254334 20200810-1 B171 59089.451226974 20200828
B050 59067.481172292 20200806-2 B111 59071.453382840 20200810-1 B172 59089.451227866 20200828
B051 59067.482660405 20200806-2 B112 59071.469047453 20200810-2 B173 59089.454059447 20200828
B052 59067.484752349 20200806-2 B113 59071.470776754 20200810-2 B174 59111.359668520 20200919-2
B053 59067.485940012 20200806-2 B114 59071.478912028 20200810-2 B175 59111.362133525 20200919-2
B054 59067.488051465 20200806-2 B115 59071.487867787 20200810-2 B176 59111.363547425 20200919-2
B055 59067.489458573 20200806-2 B116 59071.496511074 20200810-2 B177 59111.364054532 20200919-2
B056 59067.491462488 20200806-2 B117 59071.499713051 20200810-2 B178 59111.365293865 20200919-2
B057 59067.493311787 20200806-2 B118 59071.500538800 20200810-2 B179 59111.366311841 20200919-2
B058 59067.493315628 20200806-2 B119 59071.516139769 20200810-2 B180 59111.368587448 20200919-2
B059 59067.496107313 20200806-2 B120 59073.445652004 20200812-1 B181 59111.373554797 20200919-2
B060 59067.496636351 20200806-2 B121 59073.454481887 20200812-2 B182 59111.377382763 20200919-2
B061 59067.500936084 20200806-2 B122 59073.457517769 20200812-2 B183 59111.379347916 20200919-2

Bursts Detected Using HEIMDALL in C. H. Niu et al. (2022)
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Appendix B
Dynamic Spectrum of Newly Detected Bursts from

FRB 20190520B

In Figure 10, we present the dynamic spectra of 183 new
bursts detected by DRAFTS, with some plots containing more
than one burst.

Table 5
(Continued)

Burst ID MJDa Dateb Burst ID MJDa Dateb Burst ID MJDa Dateb

B001 58963.760965927 20200424 B026 59061.533633287 20200731 B051 59077.447490299 20200816-2
B002 58963.785093305 20200424 B027 59061.533634057 20200731 B052 59077.447490993 20200816-2
B003 58991.677837129 20200522 B028 59061.534968368 20200731 B053 59077.448090352 20200816-2
B004 58991.679623921 20200522 B029 59061.536363277 20200731 B054 59077.448491142 20200816-2
B005 58991.680362002 20200522 B030 59061.538893001 20200731 B055 59077.448491331 20200816-2
B006 58991.698122948 20200522 B031 59067.465150308 20200806-1 B056 59077.458653273 20200816-2
B007 58991.698124545 20200522 B032 59067.484346541 20200806-2 B057 59077.459056942 20200816-2
B008 58991.711183404 20200522 B033 59067.484347120 20200806-2 B058 59077.464848734 20200816-2
B009 58991.711364585 20200522 B034 59067.500301102 20200806-2 B059 59077.467268826 20200816-2
B010 58991.711703334 20200522 B035 59067.507509019 20200806-2 B060 59077.468457071 20200816-2
B011 58991.711703739 20200522 B036 59067.532858711 20200806-2 B061 59077.473602320 20200816-2
B012 58991.711704151 20200522 B037 59069.493704768 20200808-2 B062 59077.473884892 20200816-2
B013 58991.728936089 20200522 B038 59069.498991812 20200808-2 B063 59077.476002554 20200816-2
B014 58991.744126136 20200522 B039 59069.512791794 20200808-2 B064 59077.484007217 20200816-2
B015 58991.744126888 20200522 B040 59071.470504066 20200810-2 B065 59077.484007333 20200816-2
B016 59060.481445628 20200730-1 B041 59071.470504297 20200810-2 B066 59077.488582821 20200816-2
B017 59060.504831208 20200730-2 B042 59071.489679757 20200810-2 B067 59077.489969540 20200816-2
B018 59060.522934761 20200730-2 B043 59073.495060445 20200812-2 B068 59077.496363178 20200816-2
B019 59061.509817871 20200731 B044 59073.513431187 20200812-2 B069 59077.496514387 20200816-2
B020 59061.509818073 20200731 B045 59073.513431997 20200812-2 B070 59077.497517645 20200816-2
B021 59061.513340574 20200731 B046 59075.452713325 20200814-2 B071 59089.427874939 20200828
B022 59061.513341512 20200731 B047 59075.453222841 20200814-2 B072 59089.435877444 20200828
B023 59061.513342044 20200731 B048 59075.470543041 20200814-2 B073 59111.372277248 20200919-2
B024 59061.521404592 20200731 B049 59075.482549483 20200814-2 B074 59111.372277387 20200919-2
B025 59061.532697673 20200731 B050 59075.494828132 20200814-2 B075 59111.372729390 20200919-2

Notes.
a Topocentric MJD at 1.5 GHz.
b In the observation details shown in Table 4 from FAST, some dates correspond to two separate observation sessions. In this table, “-1” and “-2” after the date
indicate the first and second observation sessions on that day, respectively.
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Figure 10. 183 newly detected bursts from FRB 20190520B.
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Figure 10. (Continued.)
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Figure 10. (Continued.)
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